Постройте протонный прецессионный магнитометр, Краснодар, Белецкий А. И

Магнитометр предназначен для измерения индукции магнитного поля. В магнитометре используется опорное магнитное поле, которое позволяет посредством тех или иных физических эффектов преобразовать измеряемое магнитное поле в электрический сигнал .
Прикладное применение магнитометров для обнаружения массивных объектов из ферромагнитных (чаще всего, стальных) материалов основано на локальном искажении этими объектами магнитного поля Земли. Преимуществом использования магнитометров в сравнении с традиционными металлодетекторами состоит в большей дальности обнаружения .

Феррозондовые (векторные) магнитометры

Одним из видов магнитометров являются . Феррозонд был изобретен Фридрихом Фёрстером ()

В 1937 году и служит для определения вектора индукции магнитного поля .

Конструкция феррозонда

одностержневой феррозонд

Простейший феррозонд состоит из пермаллоевого стержня, на котором размещена катушка возбуждения ((drive coil ), питаемая переменным током, и измерительная катушка (detector coil ).

Пермаллой - сплав с магнитно-мягкими свойствами, состоящий из железа и 45-82 % никеля. Пермаллой обладает высокой магнитной проницаемостью (максимальная относительная магнитная проницаемость ~100 000) и малой коэрцитивной силой. Популярной маркой пермаллоя для изготовления феррозондов является 80НХС - 80 % никеля + хром и кремний с индукцией насыщения 0,65-0,75 Тл, применяется для сердечников малогабаритных трансформаторов, дросселей и реле, работающих в слабых полях магнитных экранов, для сердечников импульсных трансформаторов, магнитных усилителей и бесконтактных реле, для сердечников магнитных головок.
Зависимость относительной магнитной проницаемости от напряженности поля для некоторых сортов пермаллоя имеет вид -

Если на сердечник накладывается постоянное магнитное поле, то в измерительной катушке появляется напряжение четных гармоник, величина которого служит мерой напряженности постоянного магнитного поля. Это напряжение отфильтровывается и измеряется.

двухстержневой феррозонд

В качестве примера можно привести устройство, описанное в книге Каралиса В.Н. "Электронные схемы в промышленности" -



Прибор предназначен для измерения постоянных магнитных полей в диапазоне 0,001 ... 0,5 эрстед.
Обмотки возбуждения датчика L1 и L3 включены встречно. Измерительная обмотка L2 намотана поверх обмоток возбуждения. Обмотки возбуждения питаются током частоты 2 кГц от двухтактного генератора с индуктивной обратной связью. Режим генератора стабилизируется по постоянному току делителем на резисторах R8 и R9 .

феррозонд с тороидальным сердечником
Одним из популярных вариантов конструкции феррозондового магнитометра является феррозонд с тороидальным сердечником (ring core fluxgate ) -

По сравнению со стержневыми феррозондами такая конструкция имеет меньшие шумы и требует создания намного меньшей магнитодвижущей силы .

Этот датчик представляет собой обмотку возбуждения , намотанную на тороидальном сердечнике, по которой протекает переменный ток с амплитудой, достаточной для ввода сердечника в насыщение, и измерительную обмотку , с которой снимается переменное напряжение, которое и анализируется для измерения внешнего магнитного поля.
Измерительная обмотка наматывается поверх тороидального сердечника, охватывая его целиком (например, на специальном каркасе) -


Эта конструкция аналогична первоначальной конструкции феррозондов (конденсатор добавлен для достижения резонанса на второй гармонике) -

Применение протонных магнитометров
Протонные магнитометры широко используются в археологических исследованиях.
Протонный магнитометр упоминается в научно-фантастической новелле Майкла Крайтона "В ловушке времени" ("Timeline ") -
He pointed down past his feet. Three heavy yellow housings were clamped to the front struts of the helicopter. "Right now we’re carrying stereo terrain mappers, infrared, UV, and side-scan radar.” Kramer pointed out the rear window, toward a six-foot-long silver tube that dangled beneath the helicopter at the rear. “And what’s that?” “Proton magnetometer.” “Uh-huh. And it does what?” “Looks for magnetic anomalies in the ground below us that could indicate buried walls, or ceramics, or metal.”


Цезиевые магнитометры

Разновидностью квантовых магнитометров являются атомные магнитометры на щелочных металлах с оптической накачкой.

цезиевый магнитометр G-858

Магнитометры Оверхаузера

Твердотельные магнитометры

Наиболее доступными являются магнитометры, встроенные в смартфоны. Для Android хорошим приложением, использующим магнитометр, является . Страничка этого приложения - http://physics-toolbox-magnetometer.android.informer.com/ .

Настройка магнитометров

Для тестирования феррозонда можно использовать . Катушки Гельмгольца используются для получения практически однородного магнитного поля. В идеальном случае они представляют собой два одинаковых кольцевых витка, соединенных между собой последовательно и расположенных на расстоянии радиуса витка друг от друга. Обычно катушки Гельмгольца состоят из двух катушек, на которых намотано некоторое количество витков, причем толщина катушки должна быть много меньше их радиуса. В реальных системах толщина катушек может быть сравнима с их радиусом. Таким образом, можно считать системой колец Гельмгольца две соосно расположенных одинаковых катушки, расстояние между центрами которых приблизительно равно их среднему радиусу. Такую систему катушек называют также расщепленный соленоид (split solenoid).

В центре системы имеется зона однородного магнитного поля (магнитное поле в центре системы в объеме 1/3 радиуса колец однородно в пределах 1% ), что может быть использовано для измерительных целей, для калибровки датчиков магнитной индукции и т. д.

Магнитная индукция в центре системы определяется как $B = \mu _0\,{\left({4\over 5}\right) }^{3/2} \, {IN\over R}$,
где $N$ – число витков в каждой катушке, $I$ – ток через катушки, $R$ – средний радиус катушки.

Также катушки Гельмгольца могут быть использованы для экранирования магнитного поля Земли. Для этого лучше всего использовать три взаимно перпендикулярные пары колец, тогда не имеет значения их ориентация.

Как самому сделать вариометр (магнитометр) Можно ли самому следить за возмущениями магнитного поля Земли? Ответ очевиден - да, можно, и проще всего для этого регулярно просматривать данные ближайшей магнитной обсерватории в сети Интернет. Ну а если у Вас нет рядом компьютера и сети Интернет, и Вы живете в том регионе России, где рядом нет магнитной обсерватории, Вы можете сами сделать устройство, которое поможет Вам судить о состоянии магнитного поля Земли. Вдобавок к бытовому термометру и барометру, компас может быть таким же простым и полезным устройством для фиксации возмущений магнитного поля Земли. Не пытайтесь увидеть, как стрелка компаса мечется во время магнитной бури – эта картина на совести авторов художественных произведений. Одна из самых больших магнитных бурь за последние 100 лет на широте Москвы наблюдалась в октябре 2003 года – максимальное отклонение в горизонтальной составляющей достигало величины около 2000 нТл, что при величине самой компоненты Н в 17000 нТл составляет всего 10 %. С учетом того, что такое изменение длится единицы и десятки минут – т.е. сам процесс изменения магнитного поля достаточно медленный – Вам нужно не отводить взгляд от стрелки компаса не менее 15 минут, чтобы заметить такое отклонение. Понятно, что поймать такой момент практически невозможно, не имея системы непрерывной регистрации вариаций магнитного поля. Следует иметь ввиду, что регулярная солнечно-суточная вариация при спокойном поле составляет величину в пределах 30-40 нТл, т.е. 0,05 %, при средних магнитных бурях отклонение составляет 200-300 нТл, т.е. около 0,5 %. Отсюда ясно, что прибор для наблюдения за возмущениями магнитного поля должен представлять собой достаточно чувствительный датчик с электронной регистрацией. В качестве примера можно посмотреть разработку простых устройств для наблюдения вариаций магнитного поля своими силами на сайте лаборатории физики ионосферы Ланкастерского Университета http://www.dcs.lancs.ac.uk/iono/aurorawatch/detectors/results.html или на сайте проекта POETRY (PublicOutreach, Education, Teaching andReaching Youth), см. http://image.gsfc.nasa.gov/poetry/. Для начала можно попробовать собрать самый простой детектор возмущений – магнит на подвесе в пластиковой бутылке. Для отсчета показаний используют зеркало и осветитель, так что отраженный зайчик фиксируют на листе бумаги на некотором удалении от детектора. Регулярно отмечая движения зайчика на бумаге, можно заметить возмущения магнитного поля. На сайтах Ланкастерского Университета и проекта POETRY вся конструкция представлена настолько наглядно, что проблем с её повторением не должно быть, детали конструкции самые простые. Но нужно иметь ввиду, что чувствительность такого детектора низкая, и вы сможете фиксировать только большие бури, а такие бури бывают всего несколько раз в году. Более чувствительный детектор можно собрать на базе хорошего компаса. Такая конструкция потребует знания и умения собирать электронные схемы. Детали конструкции представлены на том же сайте Ланкастерского Университета, см. http://www.dcs.lancs.ac.uk/iono/aurorawatch/detectors/compass.htmlСхема магнитометра и рекомендации по его сборке представлены на сайте http://www.sam-europe.de/en/index_en.html . Из приведенных сведений можно прийти к заключению, что информация о возмущениях магнитного поля Земли можно получить их многих источников, вплоть до того, что самому вести наблюдения. Понятно, что такие наблюдения будут уступать профессиональным магнитным обсерваториям, но для целей любительских или для образовательных проектов такой подход вполне оправдан. Клуб «Гелиос»

Наиболее известный вид магниторазведочной аппаратуры – магнитометр . Его модифицированная разновидность – градиентометр . Принципы измерения магнитного поля в этих приборах одинаковы – они могут быть протонные, феррозондовые, квантовые и т.д, различны лишь конструктивные решения, которые позволяют решать несколько разные задачи.

Рис.1. Трёхмерное магнитное поле древнего города.

Рассмотрим наиболее широко применяющиеся виды магнитометров. В первую очередь это, конечно, протонные, феррозондовые и квантовые магнитометры. Все они обладают определёнными преимуществами и недостатками. Есть, конечно, ещё криогенные магнитометры, магнитометры на эффекте Холла, индукционные. Но пешеходные магнитометры, представляющие интерес для археологических изысканий, это, конечно, протонные, феррозондовые и в меньшей степени квантовые. Рассмотрим их сравнительных характеристики.

Казалось бы, основная характеристика магнитометра – чувствительность. Однако это не совсем так. Например, криогенные магнитометры легко достигают чувствительности 0,0001 нТл, но они настолько неудобны, громоздки и капризны, что их не применяют даже в аэроварианте (хотя попытки были).

Квантовые магнитометры также вполне способны показать точность 0,01 нТл, но имеют весьма строгие ограничения по ориентации датчиков. Их уже много лет успешно используют при аэромагнитных съёмках.

Феррозондовые магнитометры , обладая весьма высокой точностью измерений и способностью выдавать не дискретные, как квантовый и протонный магнитометры, а непрерывнй сигнал, чувствительны к изменениям температуры, что доставляет конструкторам определённые хлопоты со «сползанием нуля» прибора.

Протонные магнитометры , будучи менее чувствительны, оказались очень неплохими в смысле стабильности, малой подверженности температурным изменениям и к ориентации по сторонам света (хотя последняя всё-таки присутствует). К недостаткам протонных следует отнести дискретность измерений, требующую остановки на каждой точке, громоздкость и большой вес датчиков, а также невозможность измерений в сильных полях.

Ещё о чувствительности. Если вы видите в паспорте прибора чувствительность 0,1 нТл, то это совершенно не значит, что вы сможете обнаружить аномалию величиной хотя бы 1 нТл! Во-первых, на эту 0,1 нТл накладывается температурный дрейф нуля прибора (несколько нТл). Во-вторых, влияние пространственной ориентации прибора – ещё 2-4 нТл. Ну, и, естественно, уже знакомые нам вариации геомагнитного поля.

Словом, как показывает многолетняя практика, выделить в процессе стандартной площадной пешеходной съёмки аномалию амплитудой менее 3-7 нТл невозможно. При маршрутной же съёмке (когда поисковик идёт по какому-то маршруту, часто по пересечённой местности), стараясь выделить аномалию по текущим показаниям прибора, аномалию даже в 10-20 нТл поймать весьма сложно. Так что при поиске можно спокойно переключать чувствительность на своём приборе с 0,1 на 1 нТл и приступать к работе, не утомляя себя разглядыванием десятых долей на дисплее.

Ещё важная характеристика магнитометра – способ регистрации. Если информация выводится только на табло в цифровом виде и (или) на магнитный носитель, то, конечно же, это прибор, предназначенный для площадных съёмочных работ. Эти работы достаточно сложны, требуют материальных и временных затрат, а результат, представляемый в виде карт магнитного поля участка, выдаётся только спустя определённое время.

Поисковый прибор должен иметь световую (изменяющаяся шкала) и звуковую индикацию. Это позволяет оперативно, по ходу полевых исследований, видеть аномалию, отыскивать её центр и сразу принимать решение на предмет её перспективности. Самый распространённый поисковый прибор – ручной металлодетектор, но его глубинность оставляет желать много лучшего, хотя другие характеристики (дискриминация, точность обнаружения цели и др.) доведены производителями до высокого уровня.

Требованиям более мощного глубинного поискового прибора отвечают магнитометры-градиентометры . Являясь, по сути, двумя магнитометрами, объединёнными в единый прибор, градиентометр даёт владельцу информацию не о численном значении поля в точке измерения, а о разнице поля между двумя точками пространства – о градиенте. Поскольку градиент поля Земли, геологических структур и временных вариаций исчезающее мал, градиентометр его игнорирует. А вот градиент от результатов человеческой деятельности, напротив, велик. Поле от небольших предметов человеческой деятельности невелико, но затухает настолько быстро, что это затухание (градиент) легко фиксируется градиентометром без предварительного построения карт магнитного поля. Уловит этот перепад и обычный магнитометр, но для этого оператору придётся на каждой точке производить не один, а два замера – внизу, на уровне земли, и выше на 1-2 метра, что, конечно же, неудобно. Но для правильного измерения поля магнитометром в необходимо останавливаться на каждой точке, и это уже неудобно вдвойне.

Магнитометр – это прибор, который применяется для разведки магнитного поля Земли или поиска скрытых предметов. По принципу действия прибор немного напоминает металлоискатель, который реагирует на металлические поверхности, за тем исключением, что он чувствителен к естественному магнитному полю Земли, а также крупным неметаллическим предметам, имеющим собственное остаточное поле. Устройство нашло свое применение в различных отраслях промышленности и науки, поскольку позволяет фиксировать природные аномалии, а также ускоряет поиски объектов.

Зачем используется магнитометр

Магнитометры реагируют на магнитное поле и выражают показатели его силы в различных физических единицах измерения. В связи с этим существует много типов данных приборов, каждый из которых адаптирован под определенную поисковую цель. Модификации этих устройств применяются в десятках отраслях науки и промышленности:

  • Геология.
  • Археология.
  • Навигация.
  • Сейсмология.
  • Военная разведка.
  • Геохронология.

В геологии с помощью магнитометра осуществляется поиск полезных ископаемых без необходимости проводить пробное бурение для взятия образцов. Прибор позволяет зафиксировать богатую ископаемыми жилу и принять решение о целесообразности начала добычи в данном районе. Также с помощью данного оборудования можно определить, где находятся подземные источники питьевой воды, как они располагаются и их объем. Благодаря этому можно заблаговременно решить, где осуществить строительство колодца или скважины, чтобы добраться к воде без необходимости максимального углубления.

Магнитометры используются в археологии при раскопках. Они позволяют реагировать на скрытые глубоко под землей фундаменты зданий, статуи и прочие объекты, которые имеют остаточную намагниченность. В первую очередь это обожженный кирпич или камень. Устройство реагирует на скрытые глубоко под землей старинные очаги и печи. С его помощью можно искать объекты во льду или снегу.

Магнитометр также используется в навигации . С его помощью осуществляется определение магнитного поля Земли, в результате чего можно получить данные о направлении движения в случае дезориентации. Такие приборы используют в авиации и морском транспорте. Магнитометры являются обязательным оборудованием на космических станциях и шаттлах.

В сейсмологии магнитометры, которые реагируют на магнитное поле Земли, позволяют предсказывать землетрясение, поскольку при изменении характеристик тектонических плит происходит нарушение привычных показателей поля. Таким способом можно определить свежие подземные трещины, сквозь которые может начаться извержение.

В военной разведке данное оборудование позволяет искать военные объекты, скрытые от обычных радаров. С помощью магнитометра можно выявить лежащую на морском или океанском дне подводную лодку.

В геохронологии по силе остаточной намагниченности можно определить возраст горных пород. Существуют и более точные методы, но с помощью магнитометра это можно сделать за считанные секунды, без необходимости осуществления дорогостоящего анализа.

Разновидности магнитометров по принципу действия

По принципу действия магнитометры разделяют на 3 вида:

  • Магнитостатические.
  • Индукционные.
  • Квантовые.

Каждая разновидность реагирует на стороннее магнитное поле, используя определенный физический принцип. На базе этих трех разновидностей созданы различные узкоспециализированные виды магнитометров, которые являются более точными для измерений в определенных условиях.

Магнитостатические

Несмотря на внешнюю сложность данного прибора, он работает по вполне понятному физическому принципу. Внутри магнитометра находится небольшой постоянный магнит, реагирующий на магнитное поле, с которым контактирует. Магнит находится в подвешенном состоянии на упругой подвеске, позволяющей ему прокручиваться. Она практически не обладает своей жесткостью, поэтому не удерживает его и позволяет прокручиваться без сопротивления. Когда постоянный магнит реагирует с чужеродным полем направление которого или сила не совпадают с его собственным, происходит реакция притяжение или отторжения. В результате подвешенный постоянный магнит начинает проворачиваться, что фиксирует чувствительный датчик. Таким образом осуществляется измерение силы и направления стороннего магнитного поля.

Чувствительность магнитостатического прибора зависит от эталонного магнита, который в него установлен. Также на точность измерения влияет упругость подвески.

Индукционные

Индукционные магнитометры имеют внутри катушку с проволочной обмоткой из токопроводящего материала. Она находится под напряжением от аккумуляторного источника питания. Катушка создает собственное магнитное поле, которое начинает контактировать со сторонними полями, проходящими через ее контур. Чувствительные датчики реагируют на изменения, которые отображаются на катушке в результате такого взаимодействия. Они могут реагировать на вращение или колебания. У более сложных устройств датчики реагируют на изменение магнитной проницаемости сердечника катушки. Независимо от того каким образом фиксируется изменение, прибор отображает показатели внешних магнитных полей и позволяет определять местонахождение объектов, их размер и отдаленность.

Квантовые

Квантовый магнитометр реагирует на магнитный момент электронов, которые двигаются под действием внешних магнитных полей. Это дорогостоящее оборудование, которое применяется для лабораторных исследований, а также сложных поисков. Устройство фиксирует магнитный момент микрочастиц и напряженность измеряемого поля. Данное оборудование позволяет измерить напряженность слабых полей, в том числе тех которые находятся в космическом пространстве. Именно это оборудование применяется в георазведке для поиска глубоких залежей полезных ископаемых.

Отличие между моделями

Магнитометр представляет собой высокотехническое оборудование, которое может отличаться от других подобных приборов не только по физическому принципу реакции на изменение магнитного поля или чувствительности, но и по прочим характеристикам. Устройства могут отличаться друг от друга по следующим критериям:

  • Наличию дисплея.
  • Количеству датчиков.
  • Наличию звукового индикатора.
  • Погрешности измерения.
  • Способу индикации.
  • Продолжительности непрерывной работы.
  • Габаритам и весу.

Что касается количества чувствительных датчиков, то чем их больше, тем более точным будет оборудование. Магнитометр может отображать свои измерения в числовом или графическом выражении. Сказать что лучше сложно, поскольку все зависит от особенностей условий, в которых проводится измерение. В определенных случаях нужно просто получить отображение показателей магнитного поля в цифрах, в то время как иногда больше нужно визуальное определение вектора его завихрений. Оптимальным вариантом являются комбинированные устройства, которые позволяют визуализировать показатели в цифровом и графическом отображении.

mob_info