Какая кэш память используется в современных компьютерах. Влияние емкости кэш-памяти на производительность Core i5 третьего поколения

Кэш процессора - специальная память внутри процессора для ускорения обращения к оперативной памяти. Иногда кэш процессора называют сверхоперативной памятью, потому что доступ к ней происходит за очень маленькое время. Обычно кэш в процессорах делают на основе классических триггеров - так называемой статической памяти (SRAM). Для примера, оперативная память построена на основе конденсаторов, которые время от времени подзаряжаются. Тригеры обеспечивают практически мгновенный доступ к себе, но у них есть два главных недостатка:

  • относительно высокая стоимость изготовления
  • постоянное потребление энергии
  • Именно эти ограничения SRAM не позволяют делать на основе нее оперативную память.

    Уровни кэша процессора

    В современных процессорах кэш делится на несколько уровней

    Алгоритм работы кэш памяти

    Алгоритмом работы кэша управляет специальный контроллер, расположенный в процессоре. Он может динамически менять свою схему работы, в зависимости от обстоятельств. Но общий алгоритм кэша таков:

    Когда процессор делает запрос на чтение, контроллер кэша ищет значение в кэше и если оно найдено, отправляет его процессору. Если значение не найдено, то контроллер отправляет запрос дальше: или кэшу более низкого уровня, или в оперативную память. После чтения значения с более низкого уровня, кэш добавляет это значение себе и при следующем обращении - сразу отдаст его процессору.

    Когда процессор делает запрос на запись в оперативную память, то контроллер кэша обновляет значение у себя и передает его дальше - на более низкие уровни. В конце концов значение оказывается в оперативной памяти. По такому алгоритму обычно работает кэш на запись. Можно конечно сохранять значение только к кэше, но тогда остальные компоненты (например, DMA - прямой доступ к памяти) при доступе к оперативной памяти рискуют получить устаревшее значение.

    Частота работы кэш-памяти

    Поскольку SRAM память модут работать на очень болших частотах, кэш-память процессора обычно работает на той же частоте, что и сам процессор. Это дополнительно увеличивает скорость работы с этим видом памяти.

    Интеллектуальная кэш-память

    Современные кэш-контроллеры умеют угадывать, к каким ячейкам памяти процессор скоро обратиться и заранее загружает из в кэш. Например, если процессор обратился к ячейке 42, затем к 43, то высока вероятность того, что третье обращение будет к ячейке 44. Поэтому контроллер заранее загружает значение ячейки 44 себе в сверхбыструю память.

    Первый кэш

    Некоторое подобие кэша было еще в процессоре 8086. В нем было 6 байт кэша команд. Небольшое количество, без больших интеллектуальных способностей, но он значительно повышал быстродействие системы. Но настоящий кэш стал использоваться с процессором 80386. В те времена для обращения к оперативной памяти нужно было 120 нс времени. Но рядом с процессором ставили специальную микросхему кэш-памяти и доступ к ней просходил в 12 раз быстрее, чем к оперативной памяти. Но эта память (SRAM) была достаточно дорогой и ставить микросхему кэш памяти большого объема было нерентабельно. Поэтому первые кэши процессора были ограничены объемом 64 килобайт и устанавливались они отдельно. Начиная с процесора 80486 кэш процессора стал оправдывать свое название, потому что устанавливался прямо в процессоре.

    Место установки кэша

    Как уже было сказано выше, в процессоре 80386 не было внутреннего кэша. Кэш устанавливался отдельной микросхемой на материнской плате. В компьютерах на базе процессора 80486 как к прежде на материнской плате размещался кэш, но это был второй уровень. Первый уровень кэша устанавливался прямо в процессоре . С течением времени и развитием технологии изготовления микросхем кэш процессора полностью переехал в процессор, как и контроллер оперативной памяти.

    Кэш процессора является эффективным способом увеличить производительность процессора, за счет увеличения скорости работы с оперативной памятью .

    Что такое кэш память процессора

    Выполняет примерно ту же функцию, что и оперативная память . Только кэш - это память встроенная в процессор . Кэш-память используется процессором для хранения информации. В ней буферизируются самые часто используемые данные, за счет чего, время очередного обращения к ним значительно сокращается. Если емкость оперативной памяти на новых компьютерах от 1 Гб, то кэш у них около 2-8 Мб. Как видите, разница в объеме памяти ощутимая. Но даже этого объема вполне хватает, чтобы обеспечить нормальное быстродействие всей системы. Сейчас распространены процессоры с двумя уровнями кэш-памяти: L1 (первый уровень) и L2 (второй). Кэш первого уровня намного меньше кэша второго уровня, он обычно около 128 Кб. Используется он для хранения инструкций. А вот второй уровень используется для хранения данных, поэтому он больше. Кэш второго уровня сейчас у большинства процессоров общий. Но не у всех, вот например у AMD Athlon 64 X 2 у каждого ядра по своему кэшу L2. Кампания AMD обещает в скором времени предоставить процессор AMD Phenom с четырьмя ядрами и тремя уровнями кэш-памяти.

    Программный кэш

    Кэш процессора часто путают с программным кэшем. Это совершенно разные вещи, хотя и выполняют схожую функцию. Кэш процессора это микросхема, встроенная в процессор , которая помогает ему быстро обрабатывать информацию. Программный кэш - это папка или какой-нибудь файл на жестком диске, где какая -то программа хранит нужную ей информацию. Рассмотрим на примере: Вы загрузили мой сайт, шапка сайта (картинка, находящаяся в самом верху) и остальные рисунки сохранились кэше вашего браузера. Если вы вернетесь сюда, например, завтра, то картинки уже будут грузиться не из интернета, а из кэша вашего компьютера, что экономит ваши деньги. Если у вас браузер Opera, то папка с изображениями которые вы загружали находится по адресу.

    Кэш-память процессора позволяет получать данные с очень высокой скоростью, значительно ускоряя вычисления. В кэш – память помещаются данные, которые часто требуются процессору. Это позволяет не затрачивать лишнее время на считывание данных из оперативной памяти. Если процессор запрашивает данные, которые отсутствуют в кэш-памяти, то запрос передается через шину памяти в оперативную память, а затем найденные данные отправляются в процессор. Не трудно догадаться, что на такой запрос уходит довольно много времени. Чтобы рассказать вам, как устроена кэш-память, мы будем использовать аналогию с обычной библиотекой.

    Предположим, что у нас есть библиотека с одним библиотекарем. В библиотеку приходит посетитель и просит достать ему первую часть Гарри Поттера. Библиотекарь идет к книжным полкам, находит книгу и приносит ее посетителю. Он, пролистав, отдает ее обратно библиотекарю, который относит и ставит книгу обратно на полку. Допустим, следом приходит еще один посетитель и просит то же самое. Цикл повторяется снова. Вот так же работает и система, у которой нет кэш-памяти.

    Для чего процессору нужна кэш-память?

    Теперь, давайте посмотрим, что произойдет, если у нас есть в наличие кэш-память. Представим, что наш библиотекарь сидит за столом, в котором есть ящик, который будет служить ему в качестве кэш – памяти. Процедура та же - первый посетитель дает заявку на книгу, но когда она возвращается библиотекарю, то он не относит ее на полку, а помещает в ящик, находящийся в столе. Когда придет другой посетитель и тоже закажет ту же самую книгу, то библиотекарю не надо будет за ней никуда идти, он просто возьмет ее из ящика. Аналогичным образом работает и кэш – память процессора. Каждый раз, когда запрашиваются новые данные, процессор ищет их сначала в кэш-памяти. Подобная мера позволяет многократно увеличить скорость работы процессора.

    Кэш-память хранит только наиболее часто используемые элементы данных?

    Нет, кэш-память является довольно интеллектуально продвинутой памятью, в которую помещаются также и те данные, которые, вероятно, будут востребованы в ближайшее время. Продолжая нашу аналогию с библиотекарем, это можно объяснить следующим образом. Когда посетитель просит библиотекаря достать ему первую часть Гарри Поттера, то наш догадливый библиотекарь также берет с полки и вторую часть Гарри Поттера, резонно полагая, что посетитель, прочитав первую часть, в скором времени попросит и вторую. И когда тот ее просит, то она тут же достается из того же ящика стола. Аналогичным образом, когда кэш-память извлекает элементы данных из основной памяти, она также выбирает данные, которые находятся по адресам, рядом с затребованными данными. Эти рядом расположенные блоки данных, которые передаются в кэш, называется строки кэша.

    Два уровня кэш-памяти процессора

    Большинство жестких дисков и некоторых других компонентов компьютера используют всего один уровень кэш – памяти. В отличие от них, кэш – память процессора является двухуровневой, в которой кэш 1-го уровня (L1) меньше и быстрее, а кэш 2-го уровня немного медленнее первого, но при этом намного быстрее, чем оперативная память. Кэш L1 разделен на две части, а именно, на кэш команд и на кэш данных. В кэше команд хранится набор инструкций, которые необходимы процессору для вычислений, в то время как кэш данных хранит значения, которые необходимы для текущего исполнения. Кэш L2 отвечает за загрузку данных из основной памяти. Опять же, возвращаясь к нашей библиотеке.

    Рассмотрим, например, ящик библиотекаря как кэш L1. В один из сильно загруженных работой дней, когда посетителей много, спрос на книги велик, а ящик в столе заполнен, возникает риск его переполнения. В этом случае на помощь библиотекарю приходит рядом стоящий книжный шкаф (L2). В него библиотекарь будет складывать книги, когда не останется места в ящике стола. Теперь, когда у него спросят некоторые популярные книги, то он сначала посмотрит в ящик стола и если не найдет там запрашиваемой книги, то пойдет к книжному шкафу. Который, как вы, наверное, догадались, в нашей аналогии играет роль кэш-памяти второго уровня.

    Аналогичным образом, в процессоре, когда кэш L1заполнен, данные сохраняются в кэш-память L2. Процессор в первую очередь ищет данные в первом кэше L1, и если они не будут найдены, то далее разыскиваются в L2. Если данные не будут найдены в L2, то следует запрос в оперативную память, и в последнюю очередь запрос делается к жесткому диску.

    Чем больше кэш, тем лучше?

    На этот вопрос можно ответить одновременно и, да и нет. Больший объем кэша позволяет быстро получать данные в случае, если они доступны в любом из уровней L1 и L2. Вернемся к нашему примеру с библиотекой. Если посетитель попросит какую – либо популярную книгу, которая не хранится библиотекарем в ящике стола или в книжном шкафу, то он сначала поищет ее в ящике, а затем перейдет к книжному шкафу. То есть некоторое количество времени будет тратиться впустую, прежде чем книга, наконец, будет извлечена с книжной полки библиотеки. Так же и процессор сначала проверяет кэш первого уровня (L1), затем второго (L2) и только после этого, отправляет запрос в оперативную память. Когда данные обнаруживаются в кэше, то это называется «попаданием», в противоположном случае – «промахом»


    Таким образом, в процессе поиска данных в двух уровнях кэша, многопроцессорного времени фактически тратится зря. Элементы данных периодически обновляются и заменяются с использованием различных алгоритмов, чтобы максимизировать случаи попадания в кэш.


    Многие сейчас, вероятно, сделали однозначный вывод, если кэш-память работает столь быстро, то почему бы не реализовать ее достаточно большой, с тем, чтобы все данные, с которыми работает оперативная память, хранить в кэше. Однако не все так просто, кэш память обеспечивает быстрый доступ к найденным, но при этом сам иерархический поиск данных влечет за собой большие ресурсные расходы. Поэтому наиболее предпочтительным вариантом является оптимальный баланс между скоростью поиска данных и размером кэш-памяти.


    Первым процессором, который производился с кэшем L2, стал Pentium Pro в 1995 году. У него было 256 или 512 кбайт кэша второго уровня на кристалле, что давало существенное преимущество над обычными процессорами Pentium, чей кэш располагался на материнской плате. С появлением Pentium II в модуле Slot 1 выделенная кэш-память "поселилась" рядом с процессором. Но только у второго поколения Pentium III для Socket 370 кэш-память перешла на кристалл процессора. Так продолжается и по сей день, но есть процессоры с небольшим количеством кэша, а есть с большим. Стоит ли тратить деньги на модель с большим кэшем? В прошлом дополнительная кэш-память не всегда ощутимо влияла на производительность.

    Хотя всегда можно найти измеряемые различия между двумя процессорами с разными размерами кэша, для экономии средств вполне можно было покупать процессоры с меньшим кэшем. Но ни один процессор до появления Core 2 Duo не был доступен с тремя разными вариантами кэша.

    Pentium 4 в своём первом поколении (Willamette, 180 нм) оснащался 256 кбайт кэша, а в более успешном втором поколении (Northwood, 130 нм) - уже 512 кбайт кэша. В то время дешёвые процессоры Celeron с меньшим кэшем производились на тех же вычислительных ядрах. Celeron относятся к первому поколению продуктов с одной технологической базой для high-end и дешёвых моделей, различающихся только доступным размером кэша и частотами FSB/ядра. Позднее была добавлена и разница в функциях, чтобы заметнее разделить сегменты рынка.

    С выпуском 90-нм ядра Prescott объём кэша L2 вырос до 1 Мбайт, и этот процессор стал основой линейки настольных процессоров Intel до появления 2-Мбайт 65-нм Cedar Mill. Intel даже использовала два таких ядра для создания процессоров Pentium D 900 второго поколения. Впрочем, более быстрые тактовые частоты и больший объём кэша даже тогда не значили очень много. Сегодня ситуация изменилась: лучшая производительность Core 2 Duo (Conroe, 65 нм) и меньшее энергопотребление немало обязаны размеру кэша.

    AMD весьма сдержанно относилась к увеличению объёма кэша. Скорее всего, это связано с площадью кристалла (бюджетом транзисторов), поскольку количество 65-нм процессоров не может удовлетворить спрос на рынке, а у менее выгодных 90-нм моделей этот вопрос стоит ещё острее. У Intel, с другой стороны, есть преимущество в виде производства всех массовых процессоров по 65-нм техпроцессу, да и ёмкость кэша L2 будет ещё расти. Например, следующее поколение Core 2 на 45-нм ядре Penryn будет оснащаться до 6 Мбайт кэша L2. Можно ли рассматривать это как маркетинговый шаг, или увеличение ёмкости L2 действительно даст прирост производительности? Давайте посмотрим.

    Большой кэш L2: маркетинг или рост производительности?

    Кэши процессора играют вполне определённую роль: они уменьшают количество обращений к памяти, буферизуя часто используемые данные. Сегодня ёмкость ОЗУ составляет от 512 Мбайт до 4 Гбайт, а объём кэша - от 256 кбайт до 8 Мбайт, в зависимости от модели. Впрочем, даже небольшого объёма кэша в 256 или 512 кбайт достаточно, чтобы обеспечить высокую производительность, которую сегодня воспринимают само собой разумеющейся.

    Есть разные способы организации иерархии кэша. В большинстве современных компьютеров установлены процессоры с небольшим кэшем первого уровня (L1, до 128 кбайт), который обычно разделяется на кэш данных и кэш инструкций. Кэш L2 большего размера обычно используется для хранения данных, он является общим для двух процессорных ядер Core 2 Duo, хотя Athlon 64 X2 или Pentium D имеют раздельные кэши на ядро. Кэш L2 может работать эксклюзивно или инклюзивно, то есть он может либо хранить копию содержимого кэша L1, либо нет. AMD вскоре представит процессоры с третьим уровнем кэша, который будет общим для четырёх ядер в процессорах AMD Phenom. То же самое ожидается и для архитектуры Nehalem, которую Intel представит в 2008 году на замену текущим Core 2.

    Кэш L1 всегда был в составе процессора, но поначалу кэш L2 устанавливался на материнские платы, как было в случае многих компьютеров 486DX и Pentium. Для кэш-памяти первого уровня использовались простые чипы статической памяти (SRAM, Static RAM). Они вскоре были заменены конвейерным пакетным кэшем (pipelined burst cache) у процессоров Pentium, пока не появилась возможность устанавливать кэш на кристалл. Pentium Pro на 150 - 200 МГц стал первым процессором, содержащим 256 кбайт кэш-памяти L2 на кристалле, побив рекорд по размеру керамической упаковки для настольных ПК и рабочих станций. Pentium III для Socket 370, работающий на частотах от 500 МГц до 1,13 ГГц, стал первым процессором с 256 кбайт кэш-памяти на кристалле L2, что давало преимущество по снижению задержек, поскольку кэш работает на частоте CPU.

    Встроенный кэш L2 дал существенный прирост производительности практически в любых приложениях. Увеличение производительности оказалось столь существенным, что появление интегрированного кэша L2 можно назвать самым важным фактором производительности у процессоров x86. Отключение кэша L2 снизит производительность сильнее, чем отключение второго ядра у двуядерного процессора.

    Однако кэш-память влияет не только на производительность. Она стала мощным инструментом, позволяющим создавать разные модели процессоров для low-end, массового и high-end сегментов, поскольку производитель может гибко отбирать процессоры по отбраковке и тактовым частотам. Если на кристалле нет дефектов, то можно включить весь кэш L2, да и частоты получаются высокие. Если же желаемых тактовых частот достичь не удастся, то кристалл может стать моделью начального уровня в high-end линейке, например, Core 2 Duo 6000 с 4 Мбайт кэша и низкими частотами. Если дефекты присутствуют в кэше L2, то производитель имеет возможность отключить его часть и создать модель начального уровня с меньшим объёмом кэша, например, Core 2 Duo E4000 с 2 Мбайт кэша L2 или даже Pentium Dual Core всего с 1 Мбайт кэша. Всё это действительно так, но вопрос заключается в следующем: насколько различие в объёме кэша влияет на производительность?

    Варианты Core 2 Duo

    Intel выпустила на рынок большой ассортимент настольных процессоров. Сегодня ещё можно найти Pentium 4 и Pentium D, но большинство моделей построено на микро-архитектуре Core. Мы не рекомендуем брать процессоры Pentium 4 или Pentium D, хотя их тактовые частоты до 3,8 ГГц могут выглядеть привлекательно. Но любой процессор Core 2 на частоте 2,2 ГГц и выше способен победить даже самые быстрые модели Pentium D (собственно, как и Athlon 64 X2), поскольку Core 2 даёт намного лучшую производительность на такт .

    Благодаря меньшим тактовым частотам процессоры Core 2 более эффективны по энергопотреблению. Если топовые модели Pentium D 800 "съедают" до 130 Вт, то лишь Core 2 Extreme с четырьмя ядрами преодолевает порог 100 Вт. Все двуядерные процессоры потребляют не больше 65 Вт. Кроме того, энергопотребление в режиме бездействия процессоров Core 2 Duo ещё ниже, поскольку рабочая частота в режиме бездействия меньше (максимум 1,2 ГГц для Core 2 Duo/Quad против 2,8 ГГц для Pentium D/4). На снижение энергопотребления повлиял улучшенный дизайн транзисторов с уменьшенными токами утечки.

    Сегодня доступны модели E и X. Модели E предназначены для массового рынка, а X относятся к классу Extreme Edition. Q обозначает четыре ядра, которые Intel создаёт, размещая два двуядерных кристалла в одной физической упаковке. Процессоры E6000 оснащены 4 Мбайт кэша L2, если их модельный номер выше E6400 или заканчивается на 20 (например, E6320). Модели, заканчивающиеся на 00 (например, E6600) работают с FSB 266 МГц (FSB1066), а модели, заканчивающиеся на 50 (E6750), работают с FSB 333 МГц (FSB1333). Последняя требует чипсета P35 или X38 и даёт чуть более высокую производительность. E4000 работает с FSB 200 МГц (FSB800) и имеет всего 2 Мбайт кэша L2. Версии с 1 Мбайт кэша продаются как Pentium Dual Core E2140, E2160 и E2180 с частотами от 1,6 до 2,0 ГГц. Кроме названия и некоторых функций, которые Intel отключает у дешёвых процессоров, упомянутые модели Pentium Dual Cores идентичны Core 2 Duo.

    Характеристики процессоровCore 2 Duo
    Номер 65-нм процессора Кэш Тактовая частота FSB Технология виртуализации Технология Trusted Execution
    E6850 4 Мбайт L2 3 ГГц 333 МГц X X
    E6750 4 Мбайт L2 2,66 ГГц 333 МГц X X
    E6700 4 Мбайт L2 2,66 ГГц 266 МГц X
    E6600 4 Мбайт L2 2,40 ГГц 266 МГц X
    E6550 4 Мбайт L2 2,33 ГГц 333 МГц X X
    E6540 4 Мбайт L2 2,33 ГГц 333 МГц X
    E6420 4 Мбайт L2 2,13 ГГц 266 МГц X
    E6400 2 Мбайт L2 2,13 ГГц 266 МГц X
    E6320 4 Мбайт L2 1,86 ГГц 266 МГц X
    E6300 2 Мбайт L2 1,86 ГГц 266 МГц X
    E4600 2 Мбайт L2 2,40 ГГц 200 МГц
    E4500 2 Мбайт L2 2,20 ГГц 200 МГц
    E4400 2 Мбайт L2 2 ГГц 200 МГц
    E4300 2 Мбайт L2 1,80 ГГц 200 МГц


    Платформа
    CPU I Intel Pentium Dual Core E2160 (65 нм; 1 800 МГц, 1 Мбайт кэша L2) на частоте 2,4 ГГц (266 МГц x9)
    CPU II Intel Core 2 Duo E4400 (65 нм; 2 000 МГц, 2 Мбайт кэша L2) на частоте 2,4 ГГц (266 МГц x9)
    CPU III Intel Core 2 Duo X6800 (65 нм; 3 000 МГц, 4 Мбайт кэша L2) на частоте 2,4 ГГц (266 МГц x9)
    Материнская плата ASUS Blitz Formula, Rev: 1.0
    Чипсет: Intel P35, BIOS 1101
    Память Corsair CM2X1024-888C4D, 2x 1024 Мбайт DDR2-800 (CL 4-4-4-12 2T)
    Жёсткий диск Western Digital Raptor WD1500ADFD, 150 Гбайт, 10 000 об/мин, кэш 16 Мбайт, SATA/150
    DVD-ROM Samsung SH-S183
    Видеокарта Zotac GeForce 8800 GTS, GPU: GeForce 8800 GTS (500 МГц), память: 320 Мбайт GDDR3 (1 600 Мгц)
    Звуковая карта Встроенная
    Блок питания Enermax EG565P-VE, ATX 2.01, 510 Вт
    Системное ПО и драйверы
    ОС Windows XP Professional 5.10.2600, Service Pack 2
    Версия DirectX 9.0c (4.09.0000.0904)
    Драйверы платформы Intel Version 8.3.1013
    Графический драйвер nVidia Forceware 162.18

    Тесты и настройки

    3D-игры
    Call Of Duty 2 Version: 1.3 Retail
    Video Mode: 1280x960
    Anti Aliasing: off
    Graphics Card: medium
    Timedemo demo2
    Prey Version: 1.3
    Video Mode: 1280x1024
    Video Quality: game default
    Vsync = off
    Benchmark: THG-Demo
    Quake 4 Version: 1.2 (Dual-Core Patch)
    Video Mode: 1280x1024
    Video Quality: high
    THG Timedemo waste.map
    timedemo demo8.demo 1 (1 = load textures)
    Аудио
    Lame MP3 Version 3.98 Beta 5
    Audio CD "Terminator II SE", 53 min
    wave to mp3
    160 kbps
    Видео
    TMPEG 3.0 Express Version: 3.0.4.24 (no Audio)
    fist 5 Minutes DVD Terminator 2 SE (704x576) 16:9
    Multithreading by rendering
    DivX 6.7 Version: 6.6 (4 Logical CPUs)
    Profile: High Definition Profile
    1-pass, 3000 kbit/s
    Encoding mode: Insane Quality
    Enhanced multithreading
    no Audio
    XviD 1.1.3 Version: 1.1.3
    Target quantizer: 1.00
    Mainconcept H.264 v2 Version 2.1
    260 MB MPEG-2 source (1920x1080) 16:9
    Codec: H.264
    Mode: NTSC
    Audio: AAC
    Profile: High
    Stream: Program
    Приложения
    WinRAR Version 3.70
    (303 MB, 47 Files, 2 Folders)
    Compression = Best
    Dictionary = 4096 kB
    Autodesk 3D Studio Max Version: 8.0
    Characters "Dragon_Charater_rig"
    rendering HTDV 1920x1080
    Cinebench Version: R10
    1 CPU, x CPU run
    PCMark05 Pro Version: 1.2.0
    CPU and Memory Tests
    Windows Media Player 10.00.00.3646
    Windows Media Encoder 9.00.00.2980




    Заключение

    Если объём кэш-памяти ограниченно влияет на такие синтетические тесты, как PCMark05, то разница в производительности большинства реальных приложений оказалась весьма существенной. Поначалу это кажется удивительным, поскольку опыт говорит, что именно синтетические тесты дают самую ощутимую разницу в производительности, которая мало отражается на реальных приложениях.

    Ответ прост: размер кэша очень важен для современных процессоров с микро-архитектурой Core 2 Duo. Мы использовали 4-Мбайт Core 2 Extreme X6800, 2-Мбайт Core 2 Duo E4400 и Pentium Dual Core E2160, который является процессором Core 2 Duo с кэшем L2 всего 1 Мбайт. Все процессоры работали на одинаковой системной шине 266 МГц и с множителем 9x, чтобы частота составила 2 400 МГц. Единственная разница заключается в размере кэша, поскольку все современные двуядерные процессоры, за исключением старого Pentium D, производятся из одинаковых кристаллов. Чем станет ядро, Core 2 Extreme Edition или Pentium Dual Core, определяется выходом годных кристаллов (дефектами) или спросом рынка.

    Если вы сравните результаты 3D-шутеров Prey и Quake 4, являющих типичными игровыми приложениями, разница в производительности между 1 и 4 Мбайт составляет примерно один шаг по частоте. То же самое касается тестов кодирования видео для кодеков DivX 6.6 и XviD 1.1.2, а также архиватора WinRAR 3.7. Однако, такие интенсивно нагружающие CPU приложения, как 3DStudio Max 8, Lame MP3 Encoder или H.264 Encoder V2 от MainConcept не слишком сильно выигрывают от увеличения размера кэша.

    Впрочем, подход Intel, а именно, использование всего доступного бюджета транзисторов, который увеличился при переходе с 65-нм техпроцесса на 45-нм, имеет для микро-архитектуры Core 2 Duo определённую значимость. Кэш L2 у этих процессоров работает очень эффективно, особенно, если учесть, что он общий для двух ядер. Поэтому кэш нивелирует влияние разных частот памяти и предотвращает "узкое место" в виде FSB. И делает он это замечательно, поскольку тесты наглядно показывают, что производительность процессора с одним мегабайтом кэш-памяти невысокая.

    С этой точки зрения увеличение размера кэша L2 с 4 Мбайт до, максимум, 6 Мбайт у грядущих 45-нм двуядерных процессоров Penryn (линейка Core 2 Duo E8000) имеет смысл. Уменьшение техпроцесса с 65 до 45 нм позволяет Intel увеличить бюджет транзисторов, и благодаря увеличению объёма кэша мы вновь получим рост производительности. Впрочем, Intel получит выгоду из-за разных вариантов процессоров с 6, 4, 2 или даже 1 Мбайт кэша L2. Благодаря нескольким вариантам Intel может использовать большее число кристаллов с пластины, несмотря на наличие случайных дефектов, которые в противном случае приводили бы к попаданию кристалла в мусорную корзину. Большой размер кэша, как видим, важен не только для производительности, но и для прибыли Intel.

    Что такое кэш процессора?

    Кэш – это часть памяти, которая обеспечивает максимальную скорость доступа и ускоряет скорость вычисления. Он хранит в себе части данных, которые процессор запрашивает наиболее часто, так что процессору нет необходимости постоянно за ними обращаться к памяти системы.

    Как вы знаете, – это часть оборудования компьютера, которая характеризуется наиболее медленными скоростями обмена данными. Если процессору понадобится какая-то информация, он отправляется за ней к оперативной памяти по одноимённой шине. Получив от процессора запрос, та начинает копаться в своих анналах в поисках нужных процессору данных. По получению ОЗУ пересылает их обратно в процессор по той же шине памяти. Такой круг для обмена данными всегда был длинноват. Потому производители и решили, что можно было бы позволить процессору хранить данные где-нибудь поблизости. Принцип работы кэша основан на простой идее.

    Представьте, что память – это школьная библиотека. Ученик подходит к работнику за книжкой, та отправляется к полкам, ищет её, возвращается к студенту, должным образом оформляет и приступает к следующему ученику. В конце дня он повторяет ту же операцию, когда книги ей возвращают. Вот так работает процессор без кэша.

    Зачем же нужен кэш процессору?

    А теперь представьте, что библиотекарю надоело постоянно носиться туда-сюда с книгами, которые постоянно у неё требуют из года в год, изо дня в день. Он обзавёлся большой тумбой, где хранит наиболее часто запрашиваемые книги и учебники. Остальные, что положены, конечно, так и продолжают храниться на прежних полках. Но эти – всегда под рукой. Сколько же времени он сэкономил этой тумбой и себе, и остальным. Это и есть кэш.

    Значит, кэш умеет сохранять только самые требуемые данные?

    Да. Но он может большее. Например, уже сохраняя в себе часто требуемые данные, он способен оценить (с помощью процессора) ситуацию и затребовать информацию, которая вот-вот понадобиться. Так, клиент видео проката, затребовавший фильм «Крепкий орешек» с первой частью, скорее всего, попросит вторую. А вот она! Также и с кэшем процессора. Обращаясь к ОЗУ и сохраняя определённые данные, он извлекает и данные из соседних ячеек памяти. Такие куски данных получили название строка кэша.

    Что такое двухуровневый кэш?

    Современный процессор имеет два уровня. Соответственно, первый и второй. Обозначаются литерой L от английского Level. Первый – L1 – более быстрый, но по объёму невелик. Второй – L2 – чуть больше, но медленнее, но быстрее, нежели оперативная память. Кэш первого уровня делится на кэш инструкций и кэш данных. Кэш инструкций хранит в себе тех их набор, которые необходимы процессору для расчётов. Тогда как в кэше данных сохраняются величины или значения, необходимые для текущего вычисления. А кэш второго уровня используется для подгрузки данных из оперативной памяти компьютера. Принцип работы уровней кэша также можно объяснить с помощью примера школьной библиотеки. Так, заполнив купленную тумбу, библиотекарь понимает, что её уже не хватает на книги, ради которых постоянно приходится бегать по залу. Но список таких книг окончательно оформлен, и нужно купить такую же тумбу. Первую он выбрасывать не стал – жалко – и просто докупил вторую. И теперь, по мере заполняемости первой, библиотекарь начинает заполнять вторую, которая вступает в дело, когда первая заполнена, но нужные книги в неё не поместились. С уровнями кэша то же самое. И по мере развития микропроцессорной техники уровни кэша процессора растут в своих объёмах.

    Кэш будет продолжать расти?

    Вряд ли. Погоня за частотой процессора тоже продолжалась недолго, и производители нашли другие пути увеличения мощности. Также и с кэшем. Говоря конкретно, объём и количество уровней бесконечно раздувать нельзя. Кэш не должен превращаться в ещё одну планку оперативной памяти с медленной скоростью доступа к ней или превращать размеры процессора до уровня в половину материнской платы. Ведь скорость доступа к данным – это, прежде всего, энергопотребление и затрата производительности самого процессора. Также стали учащаться промахи кэша (в противоположность к попаданию кэша), когда процессор обращается к кэшированной памяти за данными, которых там не оказывается. Данные в кэше постоянно обновляются, используя различные алгоритмы, чтобы вероятность попадания кэша усилить.

    Прочитано: 644

    mob_info